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1 Abstract
The National Security Agency (NSA) is providing hardware simulation support and performance measurements to
aid NIST in their selection of the AES algorithm. Although much of the Round 1 analysis focused on software,
much more attention will be directed towards hardware implementation issues in the Round 2 analysis. As NIST has
stated, a common set of assumptions will be essential in comparing the hardware efficiency of the finalists. This
paper presents a technical overview of the methods and approaches used to analyze the Round 2 candidate
algorithms (MARS, RC6, RIJNDAEL, SERPENT and TWOFISH) in CMOS-based hardware. Both design
procedures and architectures will be presented to provide an overview of each of the algorithms and the methods
used. To cover a wide range of potential hardware applications, two distinct architectures will be targeted for
comparison, specifically a medium speed, small area iterated version and a high speed, large area pipelined version.
The standard design approach will consist of creating hardware models using VHDL and an underlying library of
cryptographic components to completely describe each algorithm. Once generated, the model can be verified for
correctness through simulation and comparison to test vectors, and synthesized to a common CMOS hardware
library for performance analysis. Hardware performance data will be collected for a variety of design constraints for
each of the algorithms to ensure a wide range of measured data. A summary report of the findings will be presented
to demonstrate algorithm performance across a wide range of metrics, such as speed, area, and throughput. This
report will provide a common baseline of information, which will enable NIST and the community to compare the
hardware performance of the algorithms relative to one another.

2 Introduction
The National Security Agency (NSA) agreed to provide technical support to the National Institute of Standards and
Technology (NIST) in the form of an analysis of the hardware performance of the Round 2 Advanced Encryption
Standard (AES) algorithm submissions. This analysis consisted of the design, coding, simulation and synthesis of
the five algorithms using the procedure outlined below. Throughout this evaluation, NSA has taken care to assure
that best design practices were used and that all algorithms received equal treatment. No attempt was made to
optimize any particular design, but care was taken to find the best configuration for each algorithm. Cross-validation
measures during design and simulation were used to overcome the subjective effects of the design process and to
ensure that all designs receive the same amount of attention. The results of this analysis should provide an accurate
measure of the hardware performance of each algorithm relative to the others. Undoubtedly more optimized (and
hence better performing) implementations of these algorithms can be designed, so the individual score of any
particular algorithm is not very valuable outside the context of this environment. The point of this analysis is to
provide a controlled setting in which a meaningful comparison can be made.

Based on a mathematical description of the Round 2 algorithms, and C code reference models when necessary for
clarification, NSA designers fully described each of the algorithm submissions in a hardware modeling language.  A
review by a team of design engineers followed the initial design stage to reduce the effects of coding style on
performance. Using commercially available analysis, simulation and synthesis tools, NSA design engineers have
performed simulations to produce performance estimates based on each of the hardware models. In order to provide
a wider perspective on the performance of the algorithms, two different architectures or applications were simulated
for each algorithm: an iterative version to provide a medium speed operation at minimal area/transistor count, and a
pipelined version to provide optimum speed operation, but at the cost of a larger area. This report is a summary of
the performance of the Round 2 AES candidate algorithms, and will compare and contrast the results of the analysis.
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3 Hardware Design Background

3.1 Design Guidelines
For this analysis effort, one of the main goals was to provide an unbiased comparison of the algorithms in hardware,
specifically in Application Specific Integrated Circuits (ASICs). To that end, the overhead found in typical hardware
implementations, such as a robust user-interface, was minimized to reduce the impact on the overall performance of
the algorithms. The user-interface is the Input/Output (I/O) connections and logic needed to take the plaintext and
key and present them to the algorithm, and take the output ciphertext and present it off the chip. All inputs and
control signals were registered in a common interface in order to provide uniformity across all of the algorithms,
with fixed setup and hold times identical for all algorithms. A wide variety of architectures could be used to
implement a given algorithm. In order to restrict all possible choices and yet capture valuable data points, two
fundamental architectures were chosen: iterative and pipelined. All algorithms were designed in each architecture
style. There are several variations on these approaches, including multiple copies of an iterative implementation for
parallel processing, a partially pipelined implementation, or a combination of these hybrids (multiple copies of a
partially pipelined implementation). The approach chosen will depend on the needs of the system, but these
variations will likely result in performance within the ranges given by the iterative and fully pipelined
implementations. However, these optimizations were beyond the scope of this study.

3.1.1 Target Applications

3.1.2 Iterative Architecture
The iterated approach to implementing the algorithm focuses on providing a medium to low speed version of the
algorithm, with efforts placed on limiting the physical size of the hardware. In this instance of the algorithm, one
step is performed per clock period, with the output of the previous step being used as the input to the next step. Data
is only placed on the output after the required number of algorithm rounds has been completed.

3.1.3 Pipelined Architecture
The pipelined approach to implementing an algorithm centers on providing the highest throughput to the design,
sacrificing area to obtain the level of performance needed. In the case of pipelining, all of the steps in computing the
algorithm are cascaded into a single design, with each stage feeding the next stage. The latency remains the same as
in the iterated case, but the throughput is increased significantly as new data is placed on the output on every clock
cycle. Pipelining has been shown to be an effective method of dramatically increasing the throughput capabilities of
a given algorithm. However, it comes at the expense of limiting the number of cryptographic modes that can be
supported at the maximum throughput rate. For example, since the latency of an encryption cycle remains the same
as an iterative case, there is no throughput advantage when using feedback modes such as Cipher Block Chaining
(CBC). High performance applications, such as high speed network encryption, will require the increase in
throughput, and as a result, often focus on a non-feedback mode of operation such as counter mode to obtain
performance.1

3.2 Parameter Description
There are many design parameters that can be reported for each design implementation. Some parameters will have
much more significance in a given application or environment than others. This evaluation reports on these
parameters as a method of comparison among the five algorithms, and does not claim that any single parameter has
been fully optimized. The following is a description of the parameters being reported. Some have a direct impact or
relation to performance metrics (e.g. throughput) and some are simply a function of the algorithm itself (e.g., I/O
requirements). Algorithm performance in each of the evaluation categories will be documented for each algorithm
submission.

3.2.1 Area
As an estimate based on an available MOSIS library, the results of the synthesis area reporting will consist of pre-
layout area estimates of the algorithm. Although potentially different from a post-layout estimate, the area reported
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by Synopsys will provide a relative comparison of each of the algorithm submissions. Generally, the two varieties of
architectures-– iterative and pipeline -– will be on the extremes of area with the iterative being the smallest, and the
pipelined being the largest.

3.2.2 Throughput
In most cases, throughput is directly proportional to area; as area decreases, throughput decreases. As with area, the
iterative and pipelined architectures will report the extremes of throughput. Iterative architectures will have much
lower throughput rates since there is a minimum amount of hardware, and it is re-used on multiple clock cycles of
execution. Thus, the throughput is limited by the amount of hardware reuse. More specifically, it is limited by the
number of rounds in a codebook algorithm. On the other hand, a pipelined architecture dedicates hardware for
performing all calculations in any given clock cycle. This maximizes throughput by allowing data to be written and
read from the device on every clock. In this case, throughput is a function of the worst-case delay in any one given
stage of the algorithm. Throughput will be reported for both iterative and pipelined architectures.

3.2.3 Transistor Count
Transistor count is a more specific measure than area and is often more useful. While transistor count is somewhat
dependent on the design library being used, it is a useful method of comparing the algorithms since they were
compiled using the same library. In addition, the transistor count will be a more useful figure than area when
estimating programmable logic implementations since these devices typically report the number of useable gates
(which is also directly related to transistor count). Based on the synthesized netlist (from Synopsys), an additional
report describing the number of transistors required to implement the algorithm will be provided.

3.2.4 Input/Outputs (I/O) Required
With the goal of consistency among algorithms, the I/O was fixed identically for all algorithms. However, since this
parameter is highly useful to hardware designs, it will still be reported.

3.2.5 Key Setup Time
The key setup time refers to the amount of time required before subkey expansion is ready to execute. Some
algorithms use the user-supplied key directly in the subkey expansion thereby reducing the key setup time to zero.
Others require some pre-calculation or translation of the key prior to subkey expansion steps. Key setup times will
be examined to assess the overhead of each algorithm in establishing a usable key.

3.2.6 Algorithm Setup Time
Similar to key setup time, the algorithm setup time reports the minimum amount of time before an algorithm is
ready to process data. Time to create look-up tables, etc. will fall in this category. None of the evaluated algorithms
contained an algorithm setup time greater than zero.

3.2.7 Time to Encrypt One Block
This paramter will address minimum latency times for each of the algorithm submissions. The time to encrypt one
block, measured in nanoseconds, is a function of two parameters: the worst-case path delay between any two
registers, and the number of rounds in the algorithm.

3.2.8 Time to Decrypt One Block
As above, this parameter will address minimum latency times for each of the algorithm submissions. Decryption
does not always require identical processing as encryption. Therefore, the time required to decrypt one block is
reported.

3.2.9 Time to Switch Keys
Originally, this parameter was included as a measure to encompass both key setup time and algorithm setup time
overhead. However, since none of the evaluated algorithms contained an algorithm setup time, this parameter is
identical to key setup time. Therefore, it will not be reported further in this document.
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4 Methodology

4.1 Standard Design Flow
The design process followed a common methodology used by ASIC designers. The process started with the
documentation supplied by the algorithm authors and was completed with a gate-level schematic, which included
the performance metrics data. A complete ASIC development would require physical layout and fabrication. These
steps were beyond the scope of this effort. However, the performance metrics data obtained here closely matches
that which would be found from actual fabrication and testing. Previous efforts using these tools have correlated
estimated performance from the schematic to the actual testing. Figure 1 shows the steps in the design flow.

Algorithm
Specification

VHDL
Model

Functional
Simulation

Synthesis Data Extraction

Figure 1 Standard Design Flow

4.1.1 VHDL code generation
VHSIC Hardware Description Language (VHDL)
VHDL modeling is analogous to programming simulations in C code and follows much of the same syntax.
However, unlike a behavioral description of the algorithm, VHDL (IEEE 1076) specifies how the algorithm will be
implemented in hardware. Using this hardware language, NSA designers fully described the hardware necessary to
implement each of the algorithm submissions. Performance metrics, such as speed, area, etc. (see below) can be
estimated from the hardware description using available analysis and computer aided design (CAD) tools.
There are different styles in which to code VHDL models, offering various levels of abstraction. For this evaluation,
the designers used the register transfer logic (RTL) coding style. For this style, the placement of registers and
corresponding logic between registers is chosen by the designer and is determined at the VHDL code level. There
are many different methods for identifying an optimized placement of registers. Ideally, there would be an equal
amount of logic delay between registers for all stages of the design. However, in order to simplify the design cycle
and to be consistent among all algorithms, the designers chose a common placement of registers, even if this
placement is not fully optimized. Specifically, the output of each “round” (as defined by the algorithm authors) is
registered for both a key schedule round and an algorithm round.

4.1.2 Simulation and Verification
NSA followed the design phase with a functional VHDL simulation of the designs using the Synopsys VHDL
System Simulator (VSS) to verify the correct operation of the algorithm. The test vectors submitted to NIST for each
algorithm were applied to assure that the design was working as intended. Specifically, the Variable Key and
Variable Text tests were performed for each algorithm implementation and mode (e.g., iterative encrypt, pipelined
decrypt, etc.). The modeled algorithm output was also compared with the C code model supplied to provide an
added assurance that the simulation was operating as expected.

4.1.3 Code review
NSA had one or more engineers design the VHDL for each algorithm submitted. Initial hardware designs were
straightforward implementations of the core algorithm. Following completion of each initial design, an informal
group of engineers met to review and provide feedback for the design. Improvements and alternatives to the initial
design were examined to determine potential benefits from differing architecture approaches (area compression,
pipelining, etc.). Variants of the design that improve the performance of the algorithm were then programmed for
comparison.
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4.1.4 Synthesis
Gate-level synthesis of the algorithm utilized the Synopsys Design Compiler to produce a functionally equivalent
schematic in hardware.  A MOSIS-specific technology library was used to generate a gate-level schematic of the
design and provide more accurate area and timing estimates, as if the design were to be implemented in an
integrated circuit (IC). The MOSIS library is based on a publicly available fabrication facility’s model of a specific
CMOS process, thus giving real performance metrics for an available ASIC line. The VHDL model can be re-
targeted to any supported hardware or field programmable gate array (FPGA) design libraries.

The synthesis process can generate a wide range of implementations depending on the constraints provided to the
synthesis tool. For example, one implementation may minimize area while another may minimize delay time. In
hardware synthesis, the two fundamental parameters are time and area. These parameters are directly related. As
delay time decreases, area increases. Timing and area curves that further illustrate this point are shown in subsequent
sections. The constraints provided for each algorithm synthesis routine were maintained consistently. Therefore,
differences among algorithm synthesis results will be a function of the logic required (algorithm specific) and the
synthesis tool’s ability to meet the given constraints.

4.1.5 Documentation
In addition to a summary report containing performance data, both design notebooks and VHDL documentation will
be provided to NIST for evaluation. The design notebooks will contain reporting information for all of the hardware
data that was collected, with all algorithms, designs, and architectures represented. The VHDL models and their
testbenches (for simulation verification) will also be included.

4.2 Synthesis Analysis

4.2.1 Function Characterization
Although the hardware design of the algorithms followed a top-down approach, the synthesis portion of the analysis
proceeded from the bottom of the design up through the hierarchy. In order to obtain an accurate picture of the
performance of the sub-blocks and functions in this type of analysis, a sweep was performed on each of the
functional blocks to graphically depict performance versus design constraints. Specifically, the timing constraints,
such as output delay and clock frequency, of each of the blocks were varied to observe the performance output of the
block. The results of the sweep make up the characterization for that particular block. All subsequent blocks of the
hierarchy will be analyzed using these methods.

4.2.2 Cryptographic Library
With characterization curves for each of the sub-blocks complete, five speed grade implementations were selected to
cover the performance range of the block. A variety of key performance points were selected to reflect requirements
for both high speed and small area. Figure 2 shows typical timing and area curves following a sweep of maximum
delay time constraints. These curves allow design engineers to select specific implementations of a given function.
Specifically, five implementations, or speed grades, were chosen for each function. In this example, the five selected
implementations are noted in the figure, and they represent one minimum time delay, one minimum area, and three
other points that have desired characteristics such as large area savings for a small increase in delay time.
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Figure 2 Sample Function Sweep
The five implementations were selected only for the functions of each of the algorithms, and then assembled into a
cryptographic library. Each library contained implementations of all the functions required to build the given
algorithms.

4.2.3 Block Level Characterization
Continuing with the bottom up approach, the higher level blocks underwent the same performance sweep as
described for the function level. The design constraints were varied across the entire range of the block to fully
describe the performance curve of the block. At each iteration of the synthesis process, components (e.g., functions)
were selected from the cryptographic library based on the required speed and performance. Performance curves at
the block level encompassed components of several different speed grades depending on design constraints. At the
top level, the characterization curve reflected the performance of the entire design across a wide range of design
constraints.

5 General Architecture Approach

5.1 Top Level Architecture
The design of each algorithm started with a common top level architecture that is well suited for virtually any
codebook algorithm. The generalized top level architecture consists of an Interface, an Algorithm block, a Key
Schedule block and a Controller. Figure 3 shows a block diagram of the architecture.



7

Done

Interface

Controller

Algorithm

Expanded 
Key

Control 
Signals

Control 
Signals

Chip Boundary
Ciphertext

Plaintext Key

Key 
Schedule

Figure 3 Top Level Architecture

The Interface serves to register all data inputs. This is consistent with the hardware design methodology of placing
registers at the chip boundary, thus minimizing strict setup-and-hold timing requirements. In some cases, the
interface also provides minimum functionality, such as padding keys when appropriate. The Key Schedule performs
the generation of subkeys to be used in by the Algorithm block. This includes any required key setup as well as the
expansion itself. The Algorithm performs the actual encryption or decryption of data provided from the Interface
using the subkeys from the Key Schedule. For iterative implementations, the Algorithm and Key Schedule blocks
implement a single round with internal feedback datapaths; whereas the pipelined implementations expand these
sections to include as many implementations of a round as required by the particular algorithm. Finally, the
Controller provides any necessary control signals for maintaining proper synchronization among the various blocks.

6 Algorithm Evaluation
For each of the algorithms, a description of how it was architected for both the pipelined and iterated cases is given.
Any nuances of how the rounds were simulated and the key schedule implemented are also given along with specific
examples of approaches to reduce redundancy or streamline the design. Each algorithm section then provides block
level results of timing constraints versus both chip area and timing in both the iterative and pipelined cases. A table
of performance parameters is then provided for four different key sizes, 128 bit key, 192 bit key, 256 bit key, and a
hybrid that combines all three key sizes in one key schedule that can be controlled for any particular key size. In
some cases, the combined three-in-one key schedule must make compromises to achieve the greater degree of
flexibility. Each of the performance parameters is described in more detail in Section 7, along with comparisons
across the five algorithms.

Following the architecture for each of the algorithms, each section will provide a summary of the results of the
hardware analysis for the individual algorithm. In an effort to save space, the timing and area graphs will be
presented for only the combined case which contains all three key sizes in one implementation. Both pipelined and
iterated cases will be covered. However, the complete report and design workbooks will contain graphs for all key
sizes and contains a much more complete data set. The corresponding tables will capture key performance data
points for all key size implementations. *

* Note: At time of publication, not all information was available for every parameter and for every algorithm. Due to
some unforeseen difficulties in the amount of time for simulation, some information on area, transistor count and
key setup times was not available. This was especially true for simulating the larger blocks in the pipelined cases
and for the various key sizes. In addition, certain information for MARS and RC6 was being finalized at time of
publication, so is not included in this version. Incomplete data in the following sections are indicated with asterisks.
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Complete data for the performance curves and tables of key parameters will be provided on the NIST web site and at
the conference.

6.1 MARS

6.1.1 Architecture
The MARS algorithm requires several different types of rounds2. Specifically, there are unkeyed forward mixing,
keyed forward transformation, keyed backwards transformation and unkeyed backwards mixing rounds, as well as
pre-addition and post-subtraction. The mixture of keyed and unkeyed rounds resulted in the requirement for
complex control and data flow operations between the Key Schedule and Algorithm blocks. Specifically, a complex
control situation results from the fact that subkeys are required immediately for the pre-addition stage, whereas the
next subkeys are not required until the eight unkeyed forward mixing rounds are completed. This architecture
presented some unique timing and data synchronization issues.

6.1.1.1 Pipelined Key Schedule
As with all pipelined implementations, the subkey from each round must be registered. However, for MARS, the
subkeys are not utilized on consecutive clock cycles. Therefore, additional pipelined storage is necessary. The
updated key schedule of MARS following AES Round 1 allowed for separating the 40 subkeys into groups of 10.
The VHDL model takes advantage of this operation by adding pipelined storage for groups of 10 subkeys, only as
long as necessary, rather than creating pipelined storage for all 40 subkeys. This reduced the total number of
registers required. Additionally, the pipelined registers are controlled by a latch signal rather than updating on every
clock. Again, this reduced the number of registers by removing redundancy.

6.1.1.2 Pipelined Algorithm
Relative to the intricacies of the key schedule, the pipelined algorithm implementation is straightforward. It consists
of six different types of rounds, each one with its own registered output: one key addition, eight unkeyed forward
mixings, eight keyed forward transformations, eight keyed backwards transformations, eight unkeyed backwards
mixings and one key subtraction. This makes a total of 34 rounds to complete the algorithm.

6.1.1.3 Iterative Key Schedule
The MARS algorithm key schedule generates 10 subkeys at a time. Therefore, the traditional iterative methodology
of a single round implementation for generating a single subkey (or set of subkeys as required by a single algorithm
round) did not apply. Instead, a single round implementation per 10 subkeys was generated resulting in a key
expansion round iterated four times for one encryption cycle. This presents some additional logic overhead for
iterative applications in that a “round” generates 10 subkeys simultaneously rather than the exact amount needed by
the algorithm at a given stage. (In the case of MARS, two 32-bit subkeys are required per keyed round in the
cryptographic core.) In addition to the subkey expansion overhead, there is a storage overhead for the remaining
subkeys. Also, decryption requires a full expansion of subkeys prior to beginning data processing. Therefore, the full
set of 40 subkeys is stored in registers.

6.1.1.4 Iterative Algorithm
The iterative algorithm is consistent with the pipelined algorithm in its relative simplicity when compared to the key
schedule. There is a single register for all rounds. The input to the register depends on the round number. For
example, the input for the first round of encryption is the key addition round result; for the second round it is the
unkeyed forward mixing round result and so on.

Subkeys are presented to the algorithm block as an array of all 40 subkeys. This differs from other iterative
algorithm implementations that present only one subkey at a time. The rationale for this design was to eliminate
duplicate logic in both the Key Schedule block and Algorithm block. Due to the timing gaps in the application of
subkeys and the fact that all 40 subkeys are generated prior to decryption processing, it was considered
advantageous to allow a 40 element bus to connect the two blocks.
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6.1.2 MARS Top Level Results

6.1.2.1 Timing and Area

MARS Iterative Performance Curve
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MARS Pipelined Performance Curve
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6.1.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * * *
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * * *
Time to Decrypt One Block(ns) * * * *

Parameter
Iterative 3in1 Pipelined 3in1

Table 1 MARS Summary

6.2 RC6

6.2.1 Architecture
The following provides a high level description of the major blocks in the RC6 algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook3.

6.2.1.1 Pipelined Key Schedule
The RC6 key schedule is pipelined using a slightly different method than the other algorithms. Since a significant
number of computations for the key schedule are required before any expanded keys are generated, the architecture
takes advantage of the run-up by performing the expansion at the start of the pipeline. Only a single copy of the
expansion hardware is required, but additional registering is needed to maintain the keys on a time dependent basis,
discarding keys from previous stages (i.e., the keys have already been used). Keys are then passed from register to
register to follow the data in the pipeline.

6.2.1.2 Pipelined Algorithm
The algorithm “unrolls” the stages of the algorithm into a pipeline, following the algorithm description for function
ordering and naming conventions. Combination functions are used to perform cases where distinct operations need
to be performed in encrypt and decrypt. For example, the pre-add will contain both addition and subtraction to
accommodate both cases. A similar condition exists in the algorithm round function, with slightly different functions
needed for encrypt and decrypt. However, synthesis optimization can take advantage of common operations, such as
the multiply, to reduce the total number of operators needed.

6.2.1.3 Iterative Key Schedule
The iterative key schedule is designed to perform a single round of expansion per clock. Expanded keys are fed to
the algorithm block after the controller initiates a start signal. However, the key setup has been designed to compute
single or multiple steps of the run-up in a single clock, depending on the performance needed by the rest of the
system. A load cryptovariable (i.e., load key) signal from the controller will initiate the key setup. Once complete,
the expansion can be started.

6.2.1.4 Iterative Algorithm
The RC6 iterative algorithm closely reflects the pipelined version. The same round instance is called repeatedly to
process input data. The encrypt and decrypt are symmetrical with respect to operations performed in a similar
manner (e.g., pre-add, round, post-add), so the same block can be called without additional overhead.
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6.2.2 RC6 Top Level Results

6.2.2.1 Timing and Area

RC6 Iterative Performance Curve
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RC6 Pipelined Performance Curve
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6.2.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * 1192.00 2171.00
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * 1179.2 2146.8
Time to Decrypt One Block(ns) * * 1179.2 2146.8

Parameter
Iterative 3in1 Pipelined 3in1

Table 2 RC6 Summary

6.3 RIJNDAEL

6.3.1 Architecture
The following provides a high level description of the major blocks in the RIJNDAEL algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook4.

6.3.1.1 Pipelined Key Schedule
The RIJNDAEL key schedule is based on a sliding window approach as described in the algorithm specification.
Multiple key sizes are based on the n-1 element and the n-k element (32 bit word organized), where k is 4,6, or 8,
depending on key size. The key expansion is a linear combination of the elements, so a similar function can be used
on the decrypt function to “unexpand” the keys in a reverse direction. Such an approach allows for an increase in the
key agility without sacrificing significant amounts of area to store all of the expanded keys.
The encryption expansion can start immediately, with the first words of the initial key being used as expanded key.
The setup time for this case is zero. During the decryption, the key is expanded to the last key, stored, and then the
pipeline is run to create the previous expanded key until the last decrypt key is generated, which is the initial key.
Keys are generated at a rate of four 32 bit words per round, regardless of key size, to keep up with the requirements
of the algorithm block. Additional registers are used to maintain sufficient previous keys to generate the next four
words of expanded key.
Keys are pulled from the bank of registers which make up the sliding window. S-Boxes are re-used, without a
performance penalty, to minimize the size impact of having additional S-Boxes.

6.3.1.2 Pipelined Algorithm
The RIJNDAEL algorithm pipeline consists of a sequential mapping of the steps of the algorithm to registered
stages in hardware. Each stage reflects a single round of the algorithm. The primary advantage to pipelining in this
manner is the significant increase in throughput. RIJNDAEL was architected such that both the encrypt and decrypt
functions could be performed with the same pipeline. This approach needed a static pipeline that could perform both
functions, so the algorithm round functions contained in the package will serve a dual role by providing cases for
encrypt and decrypt within the same function. The pipeline structure reflects changes in direction, such as requiring
a pre-add on the encryption (first round) versus decryption requiring a post-add on the last round.

6.3.1.3 Iterative Key Schedule
The iterative version of the key schedule focuses on reducing the area of the key expansion, so only a single copy of
the expansion is maintained. For encryption, as in the pipelined case, the expansion starts immediately, with no key
setup required. The keys are expanded every round, producing the four 32 bit words of key required. As each new
key is created and stored, the old key is overwritten.
In the case of decryption, the algorithm requires a setup time to effectively run the algorithm to the last key. This
serves as the starting point for all decryptions using that key. This value will also be stored so it can be referenced on
each new decryption to eliminate key setup for every new decryption.
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6.3.1.4 Iterative Algorithm
The algorithm block uses the same functionality as described in the pipeline but does not re-use some of the
combination functions used to construct the pipeline. Instead, the function calls are made explicitly, depending on
encryption/decryption to provide the widest possible range of hardware re-use. The function calls in the encrypt and
decrypt directions are not symmetrical. The algorithm processes the state data on each round, performing only one
step of the algorithm per round.

6.3.2 RIJNDAEL Top Level Results

6.3.2.1 Timing and Area

RIJNDAEL Iterative Performance Curve
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RIJNDAEL Pipelined Performance Curve
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6.3.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 37034346.00 81661400.00 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 371.06 519.48 4060.00 5163.00
Key Setup Time Encrypt (ns) 0.00 0.00 0.00 0.00
Key Setup Time Decrypt (ns) 246.4 344.96 0 277.92
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 493.8 346.36 247.4 346.36

Parameter
Iterative 3in1 Pipelined 3in1

Table 3 RIJNDAEL Summary

6.4 SERPENT

6.4.1 Architecture
The following provides a high level description of the major blocks in the SERPENT algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook5.

6.4.1.1 Pipelined Key Schedule
The SERPENT algorithm implements a simple expansion function for the key scheduling. The exclusive-or based
function allows for quick computation and does not require key setup in the encrypt direction. Pipelining is
maximized as this approach utilizes a sliding window approach, where only a small number of previous expanded
keys are needed to compute the next sub-keys. However, for decryption, a key setup time is required to compute the
starting point for the key expansion, which is the last set of W registers. The decrypt pipeline computes the previous
set of W registers based on the current set, as the exclusive-or based expansion can be reversed easily. To save
storage in this design, the keys are computed at each stage, with the decrypt case requiring a block of logic at the
beginning to find the last subkeys.
The SERPENT pipelined key schedule provides two successive keys to each round of the algorithm on expansion.
The algorithm will select the correct key based on the current encryption/decryption mode. The additional key
allows for the rounds that require two keys to operate.

6.4.1.2 Pipelined Algorithm
The pipelined SERPENT algorithm block contains a structural model of the unraveled rounds of the algorithm. Four
distinct functions are needed to implement both the encrypt and decrypt operations. The core algorithm round
functions are the same for 30 rounds of the algorithm, with an internal mux/demux to select the encrypt or decrypt
mode. The first two rounds of encrypt and last two rounds of decrypt distinguish the cases where the pipeline is re-
routed. The encrypt will bypass the two special rounds of the decrypt while the decrypt will bypass the two special
rounds of encrypt. The latency will remain the same as no extra rounds are added. The pipeline will select and re-
route based on the current mode of encryption or decryption.

6.4.1.3 Iterative Key Schedule
The SERPENT iterative key schedule uses a single copy of the expansion function to generate the sub-keys, one at a
time. Area can be significantly reduced using the same hardware repeatedly. Additional key setup will be required in
the decrypt direction to allow for the run-up to the last key of the expansion.

6.4.1.4 Iterative Algorithm
The iterative algorithm uses the same functions as the pipeline, with the same round instance referenced repeatedly
to perform the main processing of the algorithm. The special case rounds are selected by the state machine within
the iterative block to determine encrypt/decrypt direction, and consequently, which pre/post add functions to
perform.
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6.4.2 SERPENT Top Level Results

6.4.2.1 Timing and Area

SERPENT Iterative Performance Curve
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SERPENT Pipelined Performance Curve
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6.4.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * 202.33 5298.01 8030.11
Key Setup Time Encrypt (ns) 19.77 * 6.74 11.76
Key Setup Time Decrypt (ns) 672.18 * 212.55 365.58
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 632.64 * 510.08 773.12
Time to Decrypt One Block(ns) 632.64 * 510.08 773.12

Parameter
Iterative 3in1 Pipelined 3in1

Table 4 SERPENT Summary

6.5 TWOFISH
The following provides a high level description of the major blocks in the TWOFISH algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook6.

6.5.1 Architecture
A useful property of the TWOFISH architecture was the relatively large amount of re-use of design blocks. Both the
Key Schedule and Algorithm utilized many of the same functions. While this does not result directly in a direct
increase in performance, since key expansion and encryption are performed in parallel, it does simplify the hardware
coding process. As stated, common coding techniques and processes were used for developing each algorithm
design resulting in areas available for improvement in a more highly optimized design. In the case of TWOFISH, a
smaller design could be created by taking advantage of the function re-use. However, as with most hardware trade-
offs, this area optimization would come at the expense of performance and complex control mechanisms.
Another feature of TWOFISH is the lack of initial key runup prior to subkey expansion. In addition, the key
schedule is not a feed-forward design. Each round of key schedule is independent of the previous round. This unique
characteristic allowed for a Key Schedule that does not require a setup time for either encryption or decryption.
In the TWOFISH algorithm, the first step of encryption is a pre-whiten function, In hardware, this is simply an
exclusive-OR. The pre-whiten step is performed during the same clock cycle as the first subkey expansion which
generates the pre-whiten subkey. This was possible because the XOR function did not create a critical path concern
since the main algorithm rounds incorporate an integer addition that is more complex. The result was the ability to
load data and key in the same clock cycle, thereby reducing the overall time for encryption by one clock cycle.

6.5.1.1 Pipelined Key Schedule
In order to allow for either encryption or decryption, both pre-add and post-add subkeys are generated during the
first pipeline stage. The post-add key is buffered through a pipelined delay until needed in the final processing step.
Also, since one of the input parameters is the round number which is fixed for a given pipelined round there is an
optimization or pre-calculation in each pipelined round.

6.5.1.2 Pipelined Algorithm
The algorithm is an efficient unrolling of stages because encryption and decryption are nearly identical. In addition,
the symmetry allows for similar processing in both the encrypt and decrypt directions.

6.5.1.3 Iterative Key Schedule
As in the pipelined key schedule, the iterative design requires buffering of the post-add subkey until it is needed in
the final processing step. However, this buffering is not required to be implemented in pipelined stages. The key
schedule round is generalized such that the round number is not a fixed constant as in the pipelined case. This does
not allow synthesis optimization of each round, but does save area since only one hardware block is instantiated.

6.5.1.4 Iterative Algorithm
The differences between encryption and decryption are minor such that the additional hardware to support either
process in a single round adds minimal area.
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6.5.2 TWOFISH Top Level Results

6.5.2.1 Timing and Area

TWOFISH Iterative Performance Curve
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TWOFISH Pipelined Performance Curve
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6.5.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 91686840 158300076 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 38.29 79.00 * 1445.55
Key Setup Time Encrypt (ns) 0 0 0 0
Key Setup Time Decrypt (ns) 0 0 0 0
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1620.18 3342.6 1593.9 *
Time to Decrypt One Block(ns) 1620.18 3342.6 1593.9 *

Parameter
Iterative 3in1 Pipelined 3in1

Table 5 TWOFISH Summary

7 Performance Results
A table summarizing the results and performance metrics is given below for algorithm comparison. These
comparison values are given only for the combined key size implementation, which implements a selectable 128 bit,
192 bit, and 256 bit key in the same implementation.

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 519 * 202 79
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 494 * 633 1620
Time to Decrypt One Block(ns) * 494 * 633 1620

Algorithm
Parameter

Table 6 Iterated Summary

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 5163 2171 8030 1445
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 247 1179 510 1594
Time to Decrypt One Block(ns) * 247 1179 510 1594

Algorithm
Parameter

Table 7 Pipelined Summary

8 Summary
This paper has presented an overview of the methods and architectures used for the AES hardware comparison. The
primary characteristics used for design tradeoffs in hardware engineering are area and timing. As such, each
algorithm was examined from the standpoint of minimum area (iterative architecture) and maximum throughput
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(pipelined architecture). Further, statistics and data based on area and timing were emphasized and illustrated for
each algorithm.
The results (in Section 7) show vital parameters for both the iterative and pipelined architectures of each algorithm
that can be used to evaluate relative performance. The designs were not optimized for any one parameter, but rather
they serve as a good testbench scoring of all the algorithms relative to one another, given the same commonly used
hardware design practices and procedures. Key performance data points to highlight are minimum transistor count
and maximum throughput. *
It should be emphasized that any data point based on a single parameter (e.g. transistor count or throughput) is a
relatively narrow view of the algorithm’s overall performance or rating. For this reason, there was no attempt to rank
algorithms in order. Rather, it is left to the cryptographic community to establish a consensus of the most important
parameters – in combination or alone – and to draw appropriate conclusions from the data provided herein.

* Note: Because incomplete information was available at publication time, additional results will be updated and
provided to the community through NIST as the parameter information is filled in for all algorithms.
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