
A Note on NSA’s Dual Counter Mode of

Encryption

Pompiliu Donescu � Virgil D. Gligor �� David Wagner � � �

pompiliu@eng.umd.edu gligor@eng.umd.edu daw@cs.berkeley.edu

August 5, 2001

Abstract. We show that both variants of the Dual Counter Mode of
encryption (DCM) submitted for consideration as an AES mode of op-
eration to NIST by M. Boyle and C. Salter of the NSA are insecure with
respect to both secrecy and integrity in the face of chosen-plaintext at-
tacks. We argue that DCM cannot be easily changed to satisfy its stated
performance goal and be secure. Hence repairing DCM does not appear
worthwhile.

1 Introduction

On August 1, 2001, M. Boyle and C. Salter of the NSA submitted two variants
of the Dual Counter Mode (DCM) of encryption [1] for consideration as an AES
mode of operation to NIST. The DCM goals are: (1) to protect both the secrecy
and integrity of IP packets (as this mode is intended to satisfy the security goals
of Jutla’s IAPM mode [4]), and (2) to avoid the delay required before commenc-
ing the decryption of out-of-order IP packets, thereby decreasing the decryption
latency of IAPM. DCM is also intended to allow high rates of encryption.

The authors argue that DCM satisfies the first goal because “an error in a
cipher block causes all data in the packet to fail the integrity check”. DCM ap-
pears to satisfy the second goal because it maintains a “shared secret negotiated
during the key exchange,” which avoids the delay inherent to the decryption of
a secret IV before the first out-of-order packet arrival can be decrypted. The
authors note correctly that Jutla’s IAPM mode does not satisfy their second
goal.

In this note, we show that both variants of DCM are insecure with respect
to both secrecy and integrity in the face of chosen-plaintext attacks. Further, we
argue that DCM cannot be easily changed to satisfy its stated performance goal
for the decryption of out-of-order packets and be secure. We conclude since other
proposed AES modes satisfy the proposed goals for DCM, even if repairing DCM
is possible, which we doubt, such an exercise does not appear to be worthwhile.
1 VDG Inc., 6009 Brookside Drive, Chevy Chase, MD 20815.
2 Electrical and Computer Engineering Department, University of Maryland, College

Park, Maryland 20742.
3 Computer Science Division, EECS Department, University of California Berkeley,

Berkeley, CA. 94720.



2

2 Secrecy and Integrity Attacks against DCM

2.1 DCM Security Goals

The security of a mode is commonly expressed as a combination of secrecy and
integrity goals to be achieved in the face of different types of attacks. A common
type of attacks used to break encryption modes intended to satisfy these goals
is the chosen-plaintext attack. In a chosen-plaintext attack, an adversary can
obtain samples of valid encryptions for plaintext messages of his choice even
though the secret encryption key remains unknown to him1.

A typical secrecy goal is one that requires that an adversary be unable to
distinguish the encryption of a plaintext that he chooses from that of a ran-
dom string of the same length without the benefit of knowing the random,
secret, encryption key. This goal, which is usually called indistinguishibility
in a real-or-random sense or simply real-or-random security, provides a pow-
erful notion of secrecy when combined with a chosen-plaintext attack; i.e., it
covers many desirable secrecy properties such as assuring an adversary’s in-
ability to decrypt a ciphertext message whose plaintext is unknown with non-
negligible probability [2]. A typical integrity goal is one that requires that an
adversary be unable to produce a never-seen-before ciphertext message that
decrypts correctly (i.e., a valid forgery) with non-negligible probability. This
goal, which is usualy called existential-forgery protection or existential unforge-
ability, yields the most powerful notion of integrity known to date when com-
bined with a chosen-plaintext attack (viz., discussion of integrity notions at
http://csrc.nist.gov/encryption/modes/proposedmodes).

Undoubtedly, DCM aims to support the security notions defined above in
the face of chosen-plaintext attacks, as its stated design goal is to improve upon
the performance characteristics of Jutla’s IAPM—a mode that satisfies these
security notions—not to weaken its security.

2.2 DCM Definition – First Variant

We first illustrate our attacks againts the first variant of DCM. Given a polyno-
mial of degree W for a primitive LFSR, where W is the width of the block cipher
E, the authenticated DCM encryption mode encrypts the plaintext P into the
ciphertext C as follows [1]:

Encrypt(P1, . . . , Pj):
1. Set checksum = 0.
2. For i = 1, . . . , j, do:
3. Set xi = f(xi−1).
4. Set Ci = E(Pi ⊕ xi)⊕ xi.
5. Set checksum = checksum⊕ Pi.

1 Chosen-plaintext attacks are quite practical [5]. In fact, they are some of the oldest
known attacks in modern cryptography; viz., the “gardening” attacks of British
cryptographers during WWII. [3]



3

6. Set xj+1 = f(xj).
7. Set Cj+1 = E(checksum⊕ xj+1)⊕ x0.

In this definition, the plaintext contains j blocks, P = 〈P1, . . . , Pj〉, and its
DCM encryption produces a ciphertext string that contains j + 1 blocks, C =
〈C1, . . . , Cj , Cj+1〉. It is important to note that “x0 is the shared secret negoti-
ated during the key exchange” between a sender and a receiver and thus remains
constant during the use of that key.

Integrity Attacks. To illustrate the integrity flaws of DCM we provide two
examples of an chosen-plaintext existential forgery attack. The first example
takes advantage of the properties of the LFSR connection polynomial f , whereas
the second is independent of f . In fact, the sequence xi could be generated by a
cryptographic means from x0, re-using the same x0 for every message encrypted
with a key, and DCM would still remain vulnerable to integrity attacks.

Attack 1. In this attack the adversary first obtains x0 and then constructs a
valid forgery based on knowledge of x0. To obtain x0 the adversary first obtains
x0 ⊕ xj in a chosen-plaintext attack. For example, for j = 2, an adversary can
launch a chosen-plaintext attack to obtain chosen plaintext and ciphertext pairs
(P, C) and (P ′, C′) encrypted in DCM, where P = 〈0〉 and P ′ = 〈0, 0〉, where
here 0 denotes the all-zeros block. Then the relation C2 ⊕ C′

3 = x0 ⊕ x2 reveals
x0 ⊕x2, and moreover we claim that this information can be used to recover x0.

Claim. For a known (non-singular) LFSR of degree W with known feedback
taps, knowledge of x0 ⊕ xj reveals x0.

Proof. Let pf (t) be the connection polynomial of the LFSR (of degree W ). View
the initial fill x0 as a polynomial from GF (2)[t], taken modulo pf (t). Then
x1 = t×x0 mod pf (t), and xj = tj×x0 mod pf (t), where tj denotes the monomial
of degree j. Thus, x0 + xj = (1 + tj)x0 mod pf(t). Since 1 + tj has an easily-
computable inverse modulo pf (t) with very high probability, we can compute
x0 = (x0 + xj)/(1 + tj) mod pf (t).

Given x0, an adversary can easily break the integrity of DCM. Here is a simple
example that shows how to constructing a valid forgery with probability 1.

Let P = 〈P1, P2〉 be a chosen plaintext such that P1 = P2, and obtain the
corresponding ciphertext C using the chosen-plaintext assumption. Note that
C2 = E(P2 ⊕ x2)⊕ x2 and C3 = E(x3)⊕ x0, as the checksum is zero. Since the
adversary knows x0, he also knows xj for all j; for example, he knows x0 ⊕ x2.
Hence, he can construct a new ciphertext C′ = 〈C1, C

′
2〉 �= C, and this forgery

will be accepted by the receiver if we take

C′
2 = C2 ⊕ x0 ⊕ x2.

This forgery is valid and passes the integrity check with probability 1: when we
decrypt C′, the plaintext consists of only P1, and the decryption of the checksum



4

block yields

P ′
2 = E−1(C′

2 ⊕ x0)⊕ x2 = E−1(C2 ⊕ x0 ⊕ x2 ⊕ x0)⊕ x2

= E−1(C2 ⊕ x2)⊕ x2 = P2,

Since our choice of P ensures that P2 = P1, the checksum check will pass with
probability 1.

This demonstrates that DCM’s integrity properties are broken. Note also
that the attack remains valid (changing tj to tjW in the proof of Claim 2.2) even
if we shift the register W times between each block.

Attack 2. Next we break the integrity of DCM with a simple truncation executed
by splicing ciphertext blocks of two chosen plaintext messages P and Q. Let the
first chosen plaintext be P = 〈P1, P2, . . . , Pn−1, Pn〉 such that

P1 ⊕ P2 ⊕ ... ⊕ Pn−1 = 0,

and let the second chosen plaintext be Q = 〈Q1, Q2, · · · , Qn−1〉 such that all
Qi = 0. Encrypt plaintexts P and Q in DCM to obtain ciphertexts C and D.
This reveals two useful quantities:

1. We learn the last block of the ciphertext D,

Dn = E(0⊕ xn)⊕ x0 = E(xn)⊕ x0.

2. We learn the first n−1 blocks of the ciphertext C, namely, C1, C2, . . . , Cn−1.

Now, one can use this newly revealed information to construct a forged ciphertext

C′ = 〈C1, C2, . . . , Cn−1, Dn〉.
Clearly C′ is different from C and D, so it is new ciphertext. When decrypted,
C′ yields the plaintext P ′ = 〈P1, P2, . . . , Pn−1〉, which is a truncation of P that
also differs from Q. Note that the checksum will be valid when decrypting P ′,
so this forgery will remain undetected by the receiver.

One interesting feature of this attack is that it does not use any properties of
the LSFR’s connection polynomial f . It only uses the fact that the xi sequences
produced by the LFSR do not change between messages encrypted in the same
key by DCM, since x0 does not change.

Secrecy Attack. To illustrate a secrecy flaw of DCM, we show that an adver-
sary can easily break DCM in a “real-or-random” sense in a chosen-plaintext
attack [2].

Recall that in a real-or-random attack, a referee chooses a random, secret
encryption key and flips a coin to decide whether to return the encryption of
the (1) (real) plaintexts submitted to it by an adversary or (2) random strings
of the same lengths as those of the (real) plaintexts submitted by the adversary.
If the adversary can distinguish which decision was taken by the referee (i.e.,



5

determine the referee’s coin flip) with a probability that exceeds 1/2 by a non-
negligible amount following receipt of the ciphertext messages from the referee,
the adversary is said to have broken DCM in a real-or-random sense.

In this setting, one possible attack goes as follows. Choose two plaintexts,
P = 〈0〉 and P ′ = 〈0, 0〉, and learn their ciphertexts C, C′ using the chosen-
plaintext assumption. If their first blocks match, i.e., C1 = C′

1, then the referee
must have chosen the (real) strings P and P ′ for encryption; otherwise, the
referee must have encrypted random strings of the same size as that of P 1 and
P 2, and the adversary votes accordingly. This attack succeeds in breaking the
secrecy of DCM with probability very close to 1.

2.3 DCM Definition – Second Variant

A second variant of the DCM mode is proposed by Boyle and Salter that is
specifically designed for Internet use, i.e., with IPsec. This variant does not re-
use the initial LFSR fill x0 across packet streams and does not initialize the
checksum to zero; instead, the initial fill and checksum definition include the
IPsec sequence numbers, SEQ, and Security Parameter Index, SPI, as follows:

Encrypt(SEQ, SPI, P1, . . . , Pj):
1. Set checksum = 〈SEQ, SPI, padding〉.
2. Set y0 = x0 � 〈SEQ, SPI, padding〉.
3. For i = 1, . . . , j, do:
4. Set yi = f(yi−1).
5. Set Ci = E(Pi ⊕ yi)⊕ yi.
6. Set checksum = checksum⊕ Pi.
7. Set yj+1 = f(yj).
8. Set Cj+1 = E(checksum⊕ yj+1)⊕ y0.

Both SEQ and SPI are 32 bit numbers, and “padding” is the complement of the
64-bit number 〈SEQ, SPI〉 obtained by the concatenation of SEQ and SPI. Note
that the addition defining y0 is executed as a vector of 32-bit adds to minimize
the hardware design and overhead.

Secrecy and Integrity Attacks. Now we show that an adversary can also
mount chosen-plaintext attacks against this variant of DCM and thereby break
its secrecy and integrity with non-negligible probability. Within a single security
association (i.e., an SPI), the adversary can choose different SEQ values by
encrypting appropriate number of packets within this security association. For
our attacks, we use the following basic fact.

Claim. For a (non-singular) LFSR, the state-update function is linear, or in
other words, f(a ⊕ b) = f(a)⊕ f(b).

Proof. As in the proof of the claim in Section 2.2, let pf (t) be the connection
polynomial of the LFSR, and represent states of the LFSR as polynomials from
GF (2)[t], taken modulo pf(t). We have f(x) = t×x mod pf(t), and so f(a+b) =
t × (a + b) = ta + tb = f(a) + f(b) mod pf (t), as claimed.



6

We are now ready to describe the attack. Let the adversary choose two plain-
text strings P and Q such that the values of the initial LFSR fills yP

0 and yQ
0

used in the encryption of chosen strings P and Q (1) differ by a known constant
c, and (2) have the relationship: yQ

0 = yP
0 ⊕ c. Let the chosen sequence numbers

for Q and P be SEQQ and SEQP , respectively. We claim that if an adversary can
choose the sequence numbers SEQQ and SEPP so that the stated relationship
between the initial fills holds, then he can break both secrecy and integrity of
the DCM variant for IP. Later we show that this hypothesis holds: an adversary
can choose sequence numbers satisfying such a relationship with non-negligible
probability and hence break DCM.

Claim. If the attacker can force the use of two sequence numbers SEQP and
SEQQ satisfying yQ

0 = yP
0 ⊕ c, where c is a known constant, then:

(a) the secrecy of DCM is broken; and
(b) the integrity of DCM is broken.

Proof. (a) The adversary chooses two plaintext strings P and Q each consisting
of one block, P = 〈P1〉 and Q = 〈P1 ⊕ f(c)〉. We let C and D denote the
corresponding ciphertexts obtained by encrypting the chosen plaintexts P and
Q under DCM. By the definition of this DCM variant and the previous claim,
we obtain the following equations:

yP
1 = f(yP

0 )

yQ
1 = f(yQ

0 ) = f(yP
0 ⊕ c) = f(yP

0 )⊕ f(c) = yP
1 ⊕ f(c)

C1 = E(P1 ⊕ yP
1 )⊕ yP

1

D1 = E(Q1 ⊕ yQ
1 )⊕ yQ

1 = E(P1 ⊕ f(c)⊕ yP
1 ⊕ f(c))⊕ yP

1 ⊕ f(c)
= E(P1 ⊕ yP

1 )⊕ yP
1 ⊕ f(c) = C1 ⊕ f(c).

The adversary can then break DCM in a real-or-random sense by simply choos-
ing the plaintexts P, Q as above, obtaining putative ciphertexts C, D, and then
checking whether D1 = C1 ⊕ f(c). If this condition holds, then these cipher-
texts represent encryptions of the real strings sent by the adversary; otherwise,
we received encryptions of random strings, and the adversary votes accordingly.
This shows that this version of DCM is broken in a real-or-random sense if the
hypothesis of the claim holds with non-negligible probability.

(b) The adversary applies the following attack. The adversary chooses a
plaintext P = 〈P1, P2〉 (with sequence number SEQP ) and obtains a ciphertext
C = 〈C1, C2, C3〉. Then, the adversary chooses a second plaintext Q = 〈Q1, Q2〉
(with sequence number SEQQ chosen so that yQ

0 = yP
0 ⊕ c) such that Q1⊕Q2 =

P1⊕P2⊕ f(c)⊕ f2(c), and he obtains a ciphertext D = 〈D1, D2, D3〉. (We write
f2 for the composition of f with itself, i.e., f2 = f ◦ f .) Then the adversary
constructs his forgery using the sequence number SEQQ and the ciphertext

C′ = 〈C1 ⊕ f(c), C2 ⊕ f2(c), D3〉.



7

Since the forgery uses SEQQ, it has y0 = yQ
0 = yP

0 ⊕ c, y1 = yQ
1 = yP

1 ⊕ f(c),
and so on. Let P ′ = 〈P ′

1, P
′
2〉 denote the decrypted plaintext, and let P ′

3 represent
the decryption of the checksum block C′

3. We see that

P ′
1 = E−1(C1 ⊕ f(c)⊕ yQ

1 )⊕ yQ
1 = E−1(C1 ⊕ f(c)⊕ yP

1 ⊕ f(c))⊕ yP
1 ⊕ f(c)

= E−1(C1 ⊕ yP
1 )⊕ yP

1 ⊕ f(c) = P1 ⊕ f(c)

P ′
2 = E−1(C2 ⊕ f2(c)⊕ yQ

2 )⊕ yQ
2 = E−1(C1 ⊕ f2(c)⊕ yP

2 ⊕ f2(c)) ⊕ yP
2 ⊕ f2(c)

= E−1(C2 ⊕ yP
2 )⊕ yP

2 ⊕ f2(c) = P2 ⊕ f2(c)

P ′
3 = E−1(D3 ⊕ yQ

3 )⊕ yQ
3 = checksumQ = 〈SEQQ, SPI, paddingQ〉 ⊕ Q1 ⊕ Q2.

Using the plaintext blocks P ′
1, P

′
2, P

′
3 computed above, the adversary verifies that

the integrity check passes, as follows:

P ′
3 = 〈SEQQ, SPI, paddingQ〉 ⊕ Q1 ⊕ Q2

= 〈SEQQ, SPI, paddingQ〉 ⊕ P1 ⊕ f(c)⊕ P2 ⊕ f2(c)
= 〈SEQQ, SPI, paddingQ〉 ⊕ P ′

1 ⊕ P ′
2

In the above relation, the adversary uses the condition on the chosen plaintext
blocks Q1 ⊕Q2 = P1 ⊕P2 ⊕ f(c)⊕ f2(c). This completes the proof of the claim.

Next, we show that an adversary can choose the sequence numbers SEQP

and SEQQ such that the relationship yQ
0 = yP

0 ⊕ c holds with high probability.
Knowledge of IPsec packet formats enables an adversary to force certain sequence
numbers for selected packets sent over a security association (i.e., using the same
SPI) by the adversary making an appropriate choice of the amount of data sent.

Let SEQP = 100 · · ·0 and SEQQ = 110 · · ·0. (There are many other choices
of sequence numbers that allow an adversary to obtain the desired relationship
between the values of yQ

0 and yP
0 and constant c with non-negligible probabil-

ity. The choice made here is optimized for ease of presentation.) Then, by the
definition of padding, we can express the constants 〈SEQP , SPI, paddingP 〉 and
〈SEQQ, SPI, paddingQ〉 as the concatenation of four 32-bit blocks as follows:

〈SEQQ, SPI, paddingQ〉 = 〈110 · · ·0, SPI, 001 · · ·1, SPI〉.
〈SEQP , SPI, paddingP 〉 = 〈100 · · ·0, SPI, 011 · · ·1, SPI〉

We define c as the vector difference of these two constants, noting that

c = 〈SEQQ, SPI, paddingQ〉 − 〈SEQP , SPI, paddingP 〉
= 〈010 · · · 0, 0 · · ·0, 110 · · ·0, 0 · · · 0〉.

Hence, one can write

yQ
0 = x0 � 〈SEQQ, SPI, paddingQ〉
= x0 � 〈SEQP , SPI, paddingP 〉 � c = yP

0 � c,



8

where the constant c is known (see above), and furthermore has only three bits
non-zero. If the corresponding three bits in yP

0 are zero, then we obtain

yQ
0 = yP

0 ⊕ c.

The probability that these three bits of yP
0 are zero is 1/8 because yP

0 is random
and uniformly distributed (which is true since yP

0 is the addition of a constant
to x0, which DCM defines to be random and uniformly distributed.) Thus, it is
clear that the adversary can find two sequence numbers SEQP and SEQQ such
that yQ

0 = yP
0 ⊕ c with very high probability, where the constant c is known. The

last statement completes the presentation of the secrecy and integrity attacks
on the second variant of the DCM mode.

3 Discussion

The security problems of the first DCM variant are caused by the re-use of x0,
and all xi sequences derived from it, for all messages encrypted with the same
key. The simple modification of x0 with each message, as presented in the second
DCM variant, is very efficient but does not solve DCM’s security problems. Since
re-use of x0 for multiple messages or its simple modification on a per message
basis (i.e., using IPsec’s sequence numbers and security parameter index) is what
allows DCM to achieve its performance goals, there seems to be no easy way to
eliminate this defect without generating an new x0 for each message and thereby
defeating the performance justification for DCM.

The submission of DCM to NIST’s AES modes of operation effort marks the
first time when NSA has publicly proposed an encryption mode. We welcome
further public proposals by the NSA and encourage the DCM’s authors to con-
tinue their efforts of evaluating the AES proposals. As they are undoubtedly
aware, many past attempts at designing new modes of encryption and authen-
tication have failed, yet these failures contributed significantly to advancing the
state of the art.

References

1. M. Boyle, C. Salter, “Dual Counter Mode,” July 4, 2001, available at
http://csrc.nist.gov/encryption/modes/proposedmodes, August 1, 2001.

2. S. Goldwasser and M. Bellare, “Lecture Notes in Cryptography,” August 1999, M.I.T
Laboratory for Computer Science, available at http://theory.lcs.mit.edu/ shafi and
at http://www-cse.ucsd.edu/users/mihir.

3. F.H. Hinsley and A. Stripp, Codebreakers: the inside story of Bletchley Park, Oxford
University Press, 1993.

4. C.S. Jutla, “Encryption Modes with Almost Free Message Integrity,” IBM T.J.
Watson Research Center, Yorktown Heights, NY 10598, manuscript, August 1, 2000.
http://eprint.iacr.org/2000/039.

5. S. G. Stubblebine and V. D. Gligor, “On message integrity in cryptographic proto-
cols”, Proceedings of the 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, 85-104, 1992.


